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Magnetohydrodynamic Couette Flow Of A Non-
Newtonian Fluid In A Rotating System With Heat 

And Mass Transfer 
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Abstract—    An analytical solution is obtained for the steady Couette flow of an electrically conducting fluid between two parallel plates when the 
fluid and the plates rotate in unison about an axis normal to the plates. The equations of motion and energy have been solved with the help of 
complex variable technique pertaining to the imposed boundary conditions. After necessary computation with the various numerical values of the 
fluid parameters the expressions for primary velocity, secondary velocity of flow and temperature have been obtained. Then, the expressions for 
shear stresses and the rates of heat transfer have been derived. The results obtained are discussed with the help of graphs and tables to observe 
the effects of various parameters. It has been found that the primary velocity decreases with the increase of rotation parameter whereas the 
secondary velocity rises in reverse direction. The increase in the value of Prandtl number increases the rate of heat transfer at the stationary plate 
but reduces at the moving plate.  These results are in good agreement with earlier results.                                                        

 

       Index Terms—MHD, Couette flow, Non-Newtonian fluid, Rotating, Heat transfer, Mass transfer 

 
                                                ——————————      —————————— 

 

 

1 Introduction 

 

he flow between two parallel plates with one plate 

moving (Couette flow) is of general interest. 

Pai[1], Lehnert[2], Bleviss[3] have considered the 

magnetohydrodynamic Couette flow and heat transfer. 

However, Couette flow in a rotating frame of reference 

does not seem to have received much attention. Such a 

study will have some bearing in MHD power generator, in 

cooling turbine blades, etc. Jana and Datta[4] have 

considered the hydrodynamic Couette flow in a rotating 

frame of reference. The problem of unsteady Couette flow 

of an incompressible viscous liquid between two plates 

occurring due to the sudden motion of one of the plates has 

already been studied by Pai[5]. The same flow through a 

porous channel, has been investigated by Nanda[6], 

Katagiri[7], Muhuri[8] and Rath et. al[9] have extended the 

above problem with heat transfer in case of unsteady 

Couette flow between two parallel walls having different 

temperature. Mishra[10] has analysed the plane Couette 

flow of Oldroyd fluid with suction or injection at the 

stationary wall. Further, Soundalgekar[11] has discussed 

the plane Couette flow of Walters B’ liquid with equal rate 

of injection at one wall and suction at the other (moving 

wall). The commencement of unsteady Couette flow in case 

of second order liquid has been analysed by Padhy[12]. 
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Dash and Biswal[13] have investigated the problem of 

commencement of Couette flow in Oldroyd liquid through 

a porous channel in the presence of heat sources. 

 From technological view point, the study of both 

Newtonian and non-Newtonian Couette flow problem in the 

presence of a uniform transverse magnetic field is very 

important. Consequently, the literature is replete with 

copious instances of such investigations on MHD Couette 

flows. The object of the present study is to extend the above 

investigation in the hydromagnetic case of a non-Newtonian 

fluid in a rotating system with heat and mass transfer. 

2 Formulation of the Problem  

  

Consider the steady Couette flow of an electrically 

conducting fluid between two parallel plates when the fluid 

and the plates rotate in unison about an axis normal to the 

plates. A uniform magnetic flux B0 acts normal to the plates 

parallel to the y-axis. The xz – plane coincides with the 

stationary plate and the plate y = d moves with a uniform 

velocity U0 in the x–direction. 

 In a rotating frame of reference, the equation of 

continuity and the momentum equation are 

 . 0,q       

   (2.1) 

 
2 301 1ˆ( . ) 2 ,

k
q q k q p q q J B

  
             

 (2.2) 

Maxwell’s equations along with Ohm’s law are 

. 0B       

   (2.3) 

eB J  ,     

   (2.4) 

0E  ,     

   (2.5) 

,J E q B          

   (2.6) 

where q  is the velocity vector, B  is the magnetic induction 

vector, J is the current density, E  is the electric field 

relative to the rotating frame, ρ is the fluid density, ν is the 

kinematic coefficient of viscosity, μe is the magnetic 

permeability, P is the modified fluid pressure including the 

centrifugal force, k̂ is the unit vector along y-axis, σ is the 

electrical conductivity of the fluid Ω is the angular velocity 

of rotation. 
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 Since the plates are infinite along x and z direction, 

all physical quantities will be functions of y only. It may be 

easily shown that the following assumptions are compatible 

with the equations (2.1) – (2.5). 

* * * *
0

* * * * *

( ,0, ) , ( , , ) ,

( , , ) , ( ,0, )

x z

x y z y x

q u w B B B B

E E E E J J J

  


  

,  

   (2.7) 

 It follows from equation (2.5) that 
*
xE  and 

*
zE  are 

constants. The velocity components given by (2.7) are 

consistent with the fact that rotations induce a cross-flow 

*( )w y as shown by Batchelor[14]. It may be seen that the 

assumptions (2.7), equations (2.1), (2.3) and (2.5) are satisfied 

automatically while equations (2.2), (2.4) and (2.6) give 

 

2 * 3 *
* *0 0

2 3
2 z

K Bd u d u
O w J

dy dy


 
      

   (2.8) 

  * * * *1
,x z z x

P
O B J B J

y


  


  

   (2.9) 

 

2 * 3 *
* *0 0

2 3
2 ,x

K Bd w d w
O u J

dy dy


 
      

   (2.10) 

 

*
* ,z

e x

d B
J

dy
       

   (2.11) 

 

*
* ,x

e z

d B
J

dy
      

   (2.12) 

  * * *
0 ,x xJ E B w      

   (2.13) 

  * * * * * ,y x zO E B w B u      

   (2.14) 

  * * *
0 ,z zJ E B u      

   (2.15) 

 In equations (2.8) and (2.10), the pressure gradient 

terms are neglected since the motion is supported by the 

movement of the upper plate. However, due to rotation; a 

pressure gradient is induced along y-axis. 

 Introducing non-dimensional variables,

*

2
0

* *
0

* *
0 0

* *
0 0

* * *
0 0

, ,

( ,0, ) ( ,0, ) / ,

( ,0 , ) ( ,0, ) / ,

( ,1, ) ( , , ) / ,

( , , ) ( , , ) /

x z x z

x z x z

x y z x y z

y PP
d U

u w u w U

J J J J U B

b b B B B B

E E E E E E U B






 



 


 


 




   

  (2.16) 

Equations (2.8) – (2.15) become 

 

2 3
2 2

2 3
2 0,c z

d u d u
R a w M J

d d 
      

   (2.17) 

 
20 ( ) ,x z z x

p
R M b J b J




   


  

   (2.18) 

 

2 3
2 2

2 3
2 0 ,c x

d w d w
R a u M J

d d 
      

   (2.19) 
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 ,z
m x

db
R J

d
      

   (2.20) 

,x
m z

db
R J

d
      

   (2.21) 

,z xJ E w       

   (2.22) 

0 ( ) ,y x zE b w ub       

   (2.23) 

,x zJ E u       

   (2.24) 

Where  
1
2

0 / ,M B d    the Hartmann number 

 0 ,
U d

R


 is the Reynolds number, 

 0m eR U d 
  

is the magnetic Reynolds number, 

 

2
0 0

0

c

K U
R

 
  is the elastic parameter, 

 
2 2 /a d 

  
is the rotation parameter. 

The boundary conditions for the velocity field are 

w(0) = u (0) = 0 and w (1) = 0, u(1) = 1,  

           (2.25) 

Combining equations (2.17), (2.20), and (2.22) with equations 

(2.19), (2.21) and (2. 24) respectively, we get 

 

2 3
2 2

2 3
2 0 ,c

d F d F
R ia F M J

d d 
     

             (2.26) 

 ,m

db
R J

d
      

   (2.27) 

 0 ,J E F       

   (2.28) 

where 

 

0

, ,

, ,

z x

z x x z

F u iw J J iJ

E E iE b b ib

    


    
  

   (2.29) 

Eliminating J from equations (2.26), (2.27) and (2.28), we 

have 

2 3
2 2 2

02 3
( 2 )c

d F d F
R M ia F M E

d d 
     

   (2.30) 

0( ) ,m

db
R E F

d
       

   (2.31) 

Using (2.29), the boundary conditions (2.25) become  

 (0) 0F  and (1) 1F      

   (2.32) 

3 Solutions of the Equations 

 Now, we assume that the applied electric field 

components Ex and Ez are zero, so that E0 = 0. This 

assumption is justified if we consider 

 (1) 0b  and
(0)

0
db

d
    

   (3.1) 

Putting E0 = 0  in  equation (2.30), the equation becomes 
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2 3
2 2

2 3
( 2 ) 0c

d F d F
R M ia F

d d 
    ,  

   (3.2) 

or 

3 2
2 2

3 2
( 2 ) 0 ,c

d F d F
R M ia F

d d 
     

   (3.3) 

Solving equation (3.3), we get 

 

21
1 2 32

3
1c

C C C
F

R A

 

 

  


 
   

   (3.4) 

where 

2 2

1

2

6

M ia
A


  

Applying the boundary conditions (2.32) to (3.4), we have 

 

21
62

3
1

1

c

c

A
R

F
R A

 

 

 


 

    

   (3.5) 

Solving equation (3.5) and separating real and imaginary 

parts, we get 

 F u iw    

where  

4 2 5
7 8

2 4 2 6
8

4

4

c

c

A A a R
u

A a R









 

and  

2 3 2 2
7 8

2 4 2 6
8

2 2

4

c c

c

a R A a R A
w

A a R

 







 

Skin friction : 

 The expressions for skin-frictions at the lower plate 

and upper plate for primary flow are given by 

2

2

0

P c

u u
R




 



  
  

  
   

  

0P       

   (3.38a) 

2
*

2

1

P c

u u
R




 



  
  

  
 

6 4 2 2 12 6 4 8 4
8 8 820 192 144c c cA a R A a R A a R    

5 4 2 12 6 3 8 4
7 8 7 8 7 824 384 192c c cA A a R A A a R A A a R    

16 8 6 4 3 5 4 3
8 7 8256 80 120c c ca R A a R A A a R    

4 8 5 12 7 16 9
8 7 8480 2688 512c c cA a R A A a R a R    

 

3 8 5 2 12 7
7 8 8

2
4 8 4 2 4 2
8 8

192 3072

16 8

c c

c c

A A a R A a R

A a R A a R

 

 

  

                       (3.38b) 

Similarly, 

2

2

0

S c

w w
R




 



  
  

  
 

7 2 2
8

8
8

4 cA a R

A
      

   (3.39a) 

2
*

2

1

S c

w w
R




 



  
  

  
 

6 2 7 2 4 6 3
7 8 8 7 86 4 48c c cA A a R A a R A A a R    

2 10 5 2 10 6
7 8 7 896 1344c cA A a R A A a R   
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3 10 5 3 10 6 14 7
8 8 7192 960 384c c cA a R A a R A a R    

14 8 14 7 6 2 2
7 8 7 81536 512 12c c cA a R A a R A A a R    

 

4 6 4 5 6 4 7 2 2
7 8 8 8

2
4 8 4 2 4 2
8 8

384 384 4

16 8

c c c

c c

A A a R A a R A a R

A a R A a R

  

 

                                     

(3.39b)  

Heat transfer : 

 For the fully developed steady flow discussed 

above, the energy equation is 

 

2 2
2 * *

*

2
0

P

d T du dw

C dy dydy






    
      
     

  

  

2 2
* *

2

1 x z

e P

dB dB

dy dyC 

    
     
    

 

   (3.40) 

Where PC  the specific heat at constant pressure and 
*  is 

the thermal conductivity. The last two terms within 

parameters are the viscous dissipation and Joule heating 

term respectively. 

The boundary conditions for T are taken as 

 0 1at 0 and at ,T T y T T y d     

   (3.41) 

Where T0 and T1 (T1>T0) denote the uniform temperature of 

the stationary and the moving plate respectively. 

Introducing 

 

2
0 0

*
1 0 1 0

( )
( ) , ,

( ) ( )
r

P

T T U
E P

T T C T T


 




  

 
 

   (3.42) 

In equation (3.40), we get on using equation (2.16) 

2 2 2 22 2

2 2
0r

m

d du dw M dbx dbz
P E

d d d dd R



   

          
             
           

         (3.43) 

The boundary conditions (3.41) become 

 (0) 0 and (1) 1      

   (3.44) 

Substituting the values of ( ) , ( ) , ( )u w bx    and ( )bz 

from equation (3.5) and simplifying we obtain the value of 

θ.  

 0 1

0

d
Nu C

d







   

                                                                

(3.45) 

Mass transfer : 

      The equation of concentration is given by 

' 2 '

' 2
'

'

dc d C
V D

dy dy
                                                                                                                

(3.46) 

Where D is the chemical molecular diffusivity. 

With the boundary conditions 

Y’=0, C’=C0  

Y’=d, C’=C1                                                                                                                                         

(3.47) 

Introducing the non-dimensional parameter  

'

0

1 0

C C
C

C C





                                                                                                                         

(3.48) 
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In equation (3.46), we get the non-dimensional form of the 

concentration equation as 

2

2
0c

d C dC
RS

d d 
                                                                                                               

(3.49) 

Where cS
D


 , Schmidt parameter 

With the modified boundary condition 

When  η = 0,   C = 0                                                                           

             η = 1,   C = 1                                                                                 

(3.50) 

Solving the equation (3.49), we have  

(1 )
1

1

c

c

RS

RS

e
C

e







                                                                                                         

(3.51) 

Concentration gradient  

i

dC
CG

d
      (where i=1,2) 

1

dC
CG

d
    0     

1
c

c

RSc

RS

RS
e

e

 
  

 
 

2

dC
CG

d
    1     

1 c

c

RS

RS

e

 
  

 
                

 

 

4    Results and discussion 

  In the present investigation, 

magnetohydrodynamic Couette flow a non-Newtonian fluid 

in a rotating system with heat and mass transfer has been 

studied. The effects of various fluid parameters like the 

Hartmann number (M), Reynolds number (R), magnetic 

Reynolds number (Rm), elastic parameter (Rc) and the 

rotation parameter (a) have been displayed through graphs 

and tables. The new findings have been explained below. 

 Here, we have extended the problem of Jana, Datta 

and Majumdar, who have analysed the case of 

magnetohydrodynamic Couette flow of viscous fluid and 

heat transfer in a rotating system. They have not taken into 

consideration the case of non-Newtonian fluid. We have 

studied the effects of visco-elastic parameter (Rc) on the flow 

pattern. 
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Skin friction : 

Table –1 

Values of the skin-frictions & τs for E = 0.001 & Pr= 2.0 

M2 R RC RM a2 
*

p  p  
*

s  

5 9 0.05 0.2 1 -2.2935 -0.6667 -0.4379 

10 9 0.05 0.2 1 -3.7203 -0.6667 0.5581 

10 12 0.05 0.2 1 -3.7203 -0.6667 0.5581 

10 12 0.10 0.2 1 -1.6430 -0.6667 0.5685 

10 12 0.10 0.4 1 -1.6430 -0.6667 0.5685 

10 12 0.10 0.4 2 -1.8862 -1.3333 0.7238 

 

 

The values of the skin-friction for the various values of the 

fluid parameters have been entered in the table-1. It is seen 

that there is no primary skin-friction at the fixed plate i.e. 

0P  at η=0. But the primary skin-friction decreases with 

the rise of Hartmann number (M), at the movable plate 

(η=1.0). Increase in Reynolds number does not vary the 

primary skin-friction at the movable plate. Increase in elastic 

parameter increases 
*

P at η =1.0. Magnetic Reynolds number 

does not change the value of 
*

P . However, the increase in 

rotational parameter reduces the value of primary skin-

friction at the movable plate. 

 Secondary skin-friction S  at the fixed plate does 

not change with the change of M2, R, Rc and Rm, but varies 

with the rotational parameter (a2). It is observed that increase 

in the value of rotational parameter reduces the secondary 

skin-friction at the fixed plate. 

 Secondary skin-friction at the movable plates rises 

with M2, but does not vary with R, Rc and Rm. However, 
*

S  

increases with the increase of the rotation parameter (a2) 
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Rate of Heat Transfer : 

Table -2 : Values of the rate of heat transfer Nu0  & Nu1 

 

Pr E M2 a2 Nu0 Nu1 

2 0.001 5 1 2.42495 0.87195 

4 0.001 5 1 3.26639 0.43995 

4 0.002 5 1 4.00003 0.23810 

4 0.002 10 1 4.00003 0.23810 

4 0.002 10 2 4.00003 0.23810 

 

Various values of the rate of heat transfer Nu0 and Nu1 have 

been entered in the table-2. It is marked that the increase in 

the value of Prandtl number (Pr) increases Nu0 and decreases 

Nu1. The same result is obtained for Hartmann number (M) 

and the rotation parameter (a2). But the rise in Eckert number 

raises Nu0 and reduces Nu1. 

 

Concentration gradient : 

Table-3: Effect of Sc on concentration gradient for 

R=5.0, Rc=0.05, Gr=5.0, Gc=2.0, P=2.0, S=0.5, M=5.0, K*=1 

Sc 2.13 2.5 3.0 5.0 

CG1 1.0650250E+01 1.2500050E+01 1.5000000E+01 2.5000000E+01 

CG2 2.5241980E-04 4.6583340E-05 4.5885360E-06 3.4719860E-10 

 

 

Table 3 illustrates the behaviour of the concentration 

gradients CG1 and CG2 at the lower and upper walls of the 

channel respectively with the increase in the value of 

Schmidt number Sc. It is marked that CG1 increases and CG2 

decreases with Sc keeping other parameters of the fluid 

constant.
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Fig. 1 explains the effects of Hartmann number (M) and non-

Newtonian parameter (Rc) on the primary velocity u. It is 

observed that the primary velocity increases with M2 upto 

the distance η = 0.45 from the fixed plate in xz – plane as the 

moving plate advances in the x-direction. After η = 0.45, the 

primary velocity of flow decreases for M2 = 15. Likewise, 

beyond η = 0.57, the primary velocity u falls for M2 = 10. At 

comparatively large distance from the fixed plates the 

velocity u attains negative values. Increase in the value of Rc, 

the primary velocity u reduces and attains negative values 

beyond η = 0.75 from the fixed plate of the channel (curve 

IV). 

 

 

 
Fig. 1  Effect of M2 and Rc on primary velocity u for a2 = 2.0, E = 0.001, Pr = 2, R = 9, Rm=0.2 
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Fig. 2 shows the effects M2 and Rc on the secondary velocity 

w for fixed values of other variables. It is seen that the 

secondary velocity attains negative values at all points from 

the fixed plate. As the magnetic parameter increases, the 

secondary velocity rises in the reverse direction. But the rise 

in the elastic parameter Rc reduces the secondary velocity 

appreciably.

 

 
Fig. 2  Effect of M2 and Rc on secondary velocity w for a2 = 2.0, E = 0.001, Pr = 2, R = 9, Rm=0.2 
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The effects of rotation parameter a2 on the primary velocity 

have been displayed in Fig.3. It is observed that primary 

velocity u decreases with the increase of the rotation 

parameter at distances beyond η = 0.1 from the fixed plate 

and at η = 1.0, there is no change in primary velocity u for 

any values of the rotation parameter.

 

 
Fig. 3  Effect of a2 on primary velocity u for M2 = 5.0, E = 0.001, Pr = 2, R = 9, Rc=0.10, Rm=0.2 
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Fig. 4 presents the effects of the rotation parameter a2 on the 

secondary velocity w, keeping all the fluid parameters fixed. 

It is observed that the increase in rotation parameter raises 

the negative values of the secondary velocity. But, the peak 

values of w always leans towards the movable plate which is 

at a distance η = 0.1 from the fixed plate. 

 

 

 
Fig. 4  Effect of a2 on secondary velocity w for M2 = 5.0, E = 0.001, Pr = 2, R = 9, Rc=0.10, Rm=0.2 
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The temperature profiles have been presented in Fig. 5 to 

glean the effects of Prandtl number (Pr) and Eckert number 

(E) while fixing the values of the other fluid parameters like 

the rotation parameter a2 and Hartmann number M. It is seen 

that the rise in the values of raises the temperature of the 

fluid. The increase in Prandtl number further raises the value 

of θ. However, at a distance η=1.0, the temperature attains a 

fixed value for both Eckert number and Prandtl number i.e. 

steady thermal state is reached for the fluid flow. 

 

 
Fig. 5   Temperature profile for a2 =1.0, M2 = 4  
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Fig. 6 shows the effects of rotation parameter a2 and magnetic 

parameter M on the temperature of the fluid. It is observed 

that the rise in a2 lowers the temperature. Same effect is also 

marked for the rise of M2. Again a steady state of 

temperature is reached at a distance η = 1.0 from the fixed 

plate. 

 

 

 
Fig. 6  Temperature profile for E = 0.01, Pr = 0.025 
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The effect of Schmidt number Sc on the concentration C have 

been illustrated in Fig. 7. It is observed that the rise in the 

values of Sc decreases the concentration which attains 

negative values for Sc=5.0(Curve IV) in between η  = 0.2 and 

0.4. 
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5    Conclusions 

Above discussions on the flow and temperature profiles 

illuminate the following new findings of MHD Coquette 

flow of a non-Newtonian fluid in a rotating system. 

(i) Increase in the value of non-Newtonian parameter 

reduces the primary velocity (u) attaining negative 

values beyond η = 0.75. 

(ii) The rise in magnetic parameter raises the secondary 

velocity in the reverse direction. 

(iii) The primary velocity decreases with the increase of 

rotation parameter. 

(iv) The increase in rotation parameter raises the 

secondary velocity in reverse direction. 

(v) The increase in Prandtl number increases the 

temperature θ, while the rise in the rotation 

parameter lowers the value of temperature. 

(vi) Magnetic Reynolds number does not change the 

value of primary skin-friction at the movable plate. 

(vii) Increase in the value of rotational parameter 

reduces the secondary skin-friction at the fixed 

plate. However, the secondary skin-friction at the 

movable plate increases with the increase of the 

rotation parameter (a2). 

(viii) The increase in the value of Prandtl number (Pr) 

increases the rate of heat transfer Nu0 but reduces 

Nu1. 
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